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Many complex networks display strong heterogeneity in the degreesconnectivityd distribution. Heterogene-
ity in the degree distribution often reduces the average distance between nodes but, paradoxically, may sup-
press synchronization in networks of oscillators coupled symmetrically with uniform coupling strength. Here
we offer a solution to this apparent paradox. Our analysis is partially based on the identification of a diffusive
process underlying the communication between oscillators and reveals a striking relation between this process
and the condition for the linear stability of the synchronized states. We show that, for a given degree distri-
bution, the maximum synchronizability is achieved when the network of couplings is weighted and directed
and the overall cost involved in the couplings is minimum. This enhanced synchronizability is solely deter-
mined by the mean degree and does not depend on the degree distribution and system size. Numerical
verification of the main results is provided for representative classes of small-world and scale-free networks.
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I. INTRODUCTION

The interplay between network structure and dynamics
has attracted a great deal of attention in connection with a
variety of processesf1g, including epidemic spreadingf2g,
congestion and cascading failuresf3g, and synchronization of
coupled oscillatorsf4–11g. Much of this interest has been
prompted by the discovery that numerous real-world net-
works f1g share universal structural features, such as the
small-worldf12g and scale-free propertiesf13g. Small-world
networkssSWN’sd exhibit a small average distance between
nodes and high clusteringf12g. Scale-free networkssSFN’sd
are characterized by an algebraic, highly heterogeneous dis-
tribution of degreessnumber of links per noded f13g. Most
SFN’s also exhibit a small average distance between nodes
f14g and this distance may become smaller as the heteroge-
neity svarianced of the degree distribution is increasedf15g. It
has been shown that these structural properties strongly in-
fluence the dynamics on the network.

In oscillator networks, the ability to synchronize is gener-
ally enhanced in both SWN’s and random SFN’s as com-
pared to regular latticesf16g. However, it was recently
shown that random networks with strong heterogeneity in the
degree distribution, such as random SFN’s, are much more
difficult to synchronize than random homogeneous networks
f8g, even though the former display smaller average distance
between nodesf15g. This result is interesting for two main
reasons. First, it challenges previous interpretations that the
enhancement of synchronizability in SWN’s and SFN’s
would be due to the reduction of the average distance be-
tween oscillators. Second, in networks where synchroniza-
tion is desirable, it puts in check the hypothesis that the
scale-free property has been favored by evolution for being
dynamically advantageous.

Previous work has focused mainly on the role played by
shortest paths between nodes. By considering only shortest
paths it is implicitly assumed that the information spreads
only along them. However, the communication between os-
cillators is more closely related to a process of diffusion on
the network, which is a process involving all possible paths
between nodes. Another basic assumption of previous work
is that the oscillators are coupled symmetrically and with the
same coupling strengthf8g. Under the assumption of sym-
metric coupling, the maximum synchronizability may be in-
deed achieved when the coupling strength is uniformf9g. But
to get a better synchronizability, the couplings are not nec-
essarily symmetrical. Many real-world networks are actually
directedf1g and weighedf17g, and the communication ca-
pacity of a node is likely to saturate when the degree be-
comes large.

In this paper, we study the effect that asymmetry and
saturation of coupling strength have on the synchronizability
of complex networks. We identify a physical process of in-
formation diffusion that is relevant for the communication
between oscillators and we investigate the relation between
this process and the stability of synchronized states in di-
rected networks with weighted couplings. We address these
fundamental issues using as a paradigm the problem of com-
plete synchronization of identical oscillators.

We find that the synchronizability is explicitly related to
the mixing rate of the underlying diffusive process. For a
given degree distribution, the synchronizability is maximum
when the diffusion has a uniform stationary state, which in
general requires the network of couplings to be weighted and
directed. For large sufficiently random networks, the maxi-
mum synchronizability is primarily determined by the mean
degree of the network and does not depend on the degree
distribution and system size, in sharp contrast with the case
of unweightedssymmetricd coupling, where the synchroniz-
ability is strongly suppressed as the heterogeneity or number
of oscillators is increased. Furthermore, we show that the
total cost involved in the network coupling is significantly
reduced, as compared to the case of unweighted coupling,
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and is minimum when the synchronizability is maximum.
Some of these results were announced in Ref.f18g.

The fact that the communication between oscillators takes
place along all paths explains why the synchronizability does
not necessarily correlate with the average distance between
oscillators. Moreover, the synchronizability of SFN’s is
strongly enhanced when the network of couplings is suitably
weighted. This, in addition to the well-known improved
structural robustness of SFN’sf19g, may have played a cru-
cial role in the evolution of many SFN’s.

The paper is organized as follows. In Sec. II, we introduce
the synchronization model and the measure of synchroniz-
ability. In Sec. III, we study the corresponding process of
diffusion. In Sec. IV, we focus on the case of maximum
synchronizability. The problem of cost is considered in Sec.
V. In Sec. VI, we present direct simulations on networks of
maps. Discussion and conclusions are presented in the last
section.

II. FORMULATION OF THE PROBLEM

We introduce a generic model of coupled oscillators and
we present a condition for the linear stability of the syn-
chronized states in terms of the eigenvalues of the coupling
matrix.

A. Synchronization model

We consider complete synchronization of linearly coupled
identical oscillators:

dxi

dt
= fsxid − so

j=1

N

Gijhsxjd, i = 1,2, . . .N, s1d

where f = fsxd describes the dynamics of each individual os-
cillator, h=hsxd is the output function,G=sGijd is the cou-
pling matrix, ands is the overall coupling strength. The
rows of matrixG are assumed to have zero sum to ensure
that the synchronized statehxistd=sstd , ∀ i uds/dt= fssdj is a
solution of Eq.s1d.

In the case of symmetrically coupled oscillators with
uniform coupling strength,G is the usualssymmetricd La-
placian matrixL=sLijd: the diagonal entries areLii =ki, where
ki is the degree of nodei, and the off-diagonal entries are
Lij =−1 if nodesi and j are connected andLij =0 otherwise.
For Gij =Lij , heterogeneity in the degree distribution sup-
presses synchronization in important classes of networksf8g
ssee also Ref.f10gd. The synchronizability can be easily en-
hanced if we modify the topology of the network of cou-
plings. Here, however, we address the problem of enhance-
ment of synchronizability for agivennetwork topology.

In order to enhance the synchronizability of heteroge-
neous networks, we propose to scale the coupling strength by
a function of the degree of the nodes. For specificity, we take

Gij = Lij /ki
b, s2d

whereb is a tunable parameter. We say that the network or
coupling is weighted whenbÞ0 and unweighted whenb
=0. The underlying network associated with the Laplacian

matrix L is undirected and unweighted, but forbÞ0, the
network of couplings becomes not only weighted but also
directed because the resulting matrixG is in general asym-
metric. This is a special kind of directed network where the
number ofin-links is equal to the number ofout-links in each
node, and the directions are encoded in the strengths of in-
and out-links. In spite of the possible asymmetry of matrix
G, all the eigenvalues of matrixG are nonnegative reals and
can be ordered as 0=l1øl2¯ ølN, as shown below.

B. Basic spectral properties

Equations2d can be written as

G = D−bL, s3d

where D=diaghk1,k2, . . . ,kNj is the diagonal matrix of de-
grees.sWe recall that the degreeki is the number of os-
cillators coupled to oscillator i.d From the identity
detsD−bL−lId=detsD−b/2LD−b/2−lId, valid for anyl, where
“det” denotes the determinant andI is the N3N identity
matrix, we have that the spectrum of eigenvalues of matrixG
is equal to the spectrum of a symmetric matrix defined as

H = D−b/2LD−b/2. s4d

That is,rsGd=rsHd, wherer denotes the set of eigenvalues.
From this follows that all eigenvalues of matrixG are real, as
anticipated above. It is worth mentioning that, although the
eigenvalues ofG andH are equal, from the numerical point
of view it is much more efficient to compute the eigenvalues
from the symmetric matrixH than fromG.

Additionally, all the eigenvalues of matrixG are non-
negative becauseH is positive semidefinite, and the smallest
eigenvaluel1 is always zero because the rows ofG have
zero sum. Moreover, if the network is connected, thenl2
.0 for any finite b. This follows from the corresponding
property forL and Eq.s4d—i.e., the fact that matricesH and
L are congruent. Naturally, the study of complete synchroni-
zation of the whole network only makes sense if the network
is connected.

For b=1, matrix H is the normalized Laplacian matrix
studied in spectral graph theoryf20g. In this case, ifNù2
and the network is connected, then 0,l2øN/ sN−1d and
N/ sN−1dølNø2. For spectral properties of unweighted
SFN’s, see Refs.f21–23g.

C. Synchronizability

The variational equations governing the linear stability of
a synchronized statehxistd=sstd , ∀ ij of the system in Eqs.s1d
and s2d can be diagonalized intoN blocks of the form

dh

dt
= fDfssd − aDhssdgh, s5d

whereD denotes the Jacobian matrix,a=sli, andli are the
eigenvalues of the coupling matrixG. The largest Lyapunov
exponentGsad of this equation can be regarded as a master
stability function, which determines the linear stability of the
synchronized state for any linear coupling schemef24g: the
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synchronized state is stable ifGsslid,0 for i =2, . . . ,N.
sThe eigenvaluel1 corresponds to a mode parallel to the
synchronization manifold.d

For many widely studied oscillatory systemsf7,24g, the
master stability functionGsad is negative in a single, finite
interval sa1,a2d. Therefore, the network is synchronizable
for somes when the eigenratioR=lN/l2 satisfies

R, a2/a1. s6d

The right-hand side of this equation depends only on the
dynamicssf, h, andsd, while the eigenratioR depends only
on the coupling matrixG. The problem of synchronization is
then reduced to the analysis of eigenvalues of the coupling
matrix f7g: the smaller the eigenratioR, the larger the syn-
chronizability of the network and vice versa.

III. DIFFUSION AND BALANCE OF HETEROGENEITY

We study a process of diffusion relevant for the commu-
nication between oscillators and we argue that the synchro-
nizability is maximumsR is minimumd for b=1.

A. Diffusion process

From the identity

o
j=1

N

Gijhsxjd = o
j=1

N

ki
−bAijfhsxid − hsxjdg, s7d

we observe that the weighted coupling scheme in Eqs.s1d
ands2d is naturally related to a diffusive process with absorp-
tion and emission described by the transition matrix

P =
1

L
D−bA, s8d

whereA=D−L is the adjacency matrix andL is the largest
eigenvalue ofD−bA. According to this process, if we start
with an arbitrary distributiony=sys1d , . . . ,ysNdd, whereysid is
associated with the initial state at nodei, after n time steps
the distribution isPny. This process is different from the
usualsconservatived random walk process. In particular, be-
causeoiPij may be different from 1, the diffusionin andout
of a node may differ even in the stationary state.

For instance, consider a network of three nodes,a-b-c,
where nodesa andc have degree 1 and are both connected to
nodeb. For b=1, the transition matrix is

P = 1 0 1 0

1/2 0 1/2

0 1 0
2 . s9d

In the stationary state, each of the three nodes has, say, one
unity sof the “diffusive quantity”d. At each time step, nodeb
receives 1/2 unit from nodea and 1/2 unit from nodec, and
each of the nodesa and c receives 1 unit from nodeb.
Therefore, nodeb sends a total of 2 units and receives only 1
unit, while each of the nodesa and c sends 1/2 unit and
receives 1 unit. This means that there is an “absorption” of
1/2 unit at each of the nodesa andc and the “emission” of

1 unit at nodeb. It is in this sense that the matrix in Eq.s8d
describes a diffusive process with absorption and emission.

On the other hand, the usual random walk process is con-
servative at each node. Such a process is described by the
matrix D−bAC−1, whereCij =di jo,, jk,

−b and the sum is over
all the kj nodes connected to nodej . For a nodei connected
to a nodej and a uniform distribution, this conservation law
implies that the amount of information that nodei receives
from node j depends on the degree of all the nodes con-
nected to nodej . But this is not what happens in a network of
self-sustained oscillators. In a network of oscillators, the
amount of information that oscillatori receives directly from
oscillator j can only depend on the strength of the coupling
from j to i, which is proportional to 1/ki

b, as in the process
described by the transition matrix in Eq.s8d.

B. Balance of heterogeneity

Because the master stability functionGsad is negative in a
finite interval sa1,a2d, increasingsdecreasingd the overall
coupling strengths beyond a critical valuesmaxssmind desta-
bilizes the synchronized state. Dynamically, the loss of sta-
bility is due to a short-slong-d wavelength bifurcation ats
=smaxssmind f25g ssee also Ref.f11gd. Physically, this bifur-
cation excites the shortestslongestd spatial wavelength mode
because some oscillators are too stronglysweaklyd influ-
enced by the others.

Now, consider the process of diffusion described by ma-
trix P on a network where not all the nodes have the same
degree. Starting with an arbitrary distributiony, aftern steps
we havePny. If we require thesstationaryd distribution for
n→` to be uniform, we obtainb=1 because this is the only
case wherey0=s1,1, . . . ,1d is an eigenvector associated with
the eigenvalue 1, which is the largest eigenvalue of matrixP.
For b,1, the distribution is more heavily concentrated on
nodes with large degree. Forb.1, the concentration hap-
pens on nodes with small degree. Physically, this means that
for both b,1 andb.1 some oscillators are more strongly
influenced than others and the ability of the network to syn-
chronize is limited by the least and most influenced oscilla-
tors: for smallslarged s the system is expected to undergo a
long- sshort-d wavelength bifurcation due to the leastsmostd
influenced nodes, as explained above. We then expect the
network to achieve maximum synchronizability atb=1.

In Fig. 1 we show the numerical verification of this hy-
pothesis for various models of complex networks. The net-
works are built as followsf26g.

sid Random SFN’sf27g. Each node is assigned to have a
numberki ùkmin of “half-links” according to the probability
distribution Pskd,k−g, where g is a scaling exponent and
kmin is a constant integer. The network is generated by ran-
domly connecting these half-links to form links, prohibiting
self- and repeated links. In the limitg=`, all nodes have the
same degreek=kmin.

sii d Networks with expected scale-free sequencef22g. The

network is generated from a sequencek̃1, k̃2, . . . ,k̃N, where

k̃i ù k̃min follows the distribution Psk̃d, k̃−g and maxik̃i
2

,oik̃i. A link is then independently assigned to each pair of
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nodessi , jd with probabilitypij = k̃ik̃j /oik̃i. In this model, self-
links are allowed. We observe, however, that the eigenratioR
is insensitive to the removal of self-links.

siii d Growing SFN’sf28g. We start with a fully connected
network withm nodes and at each time step a new node with
m links is added to the network. Each new link is connected

to a nodei in the network with probabilityPi ,s1−pdk̂i +p,

where k̂i is the updated degree of nodei and 0øpø1 is a
tunable parameter. For large degrees, the scaling exponent of
the resulting network isg=3+pfms1−pdg−1. For p=0, the
exponent isg=3 and we recover the Barabási-Albert model
f13g.

sivd SWN’sf29g. Starting with a ring ofN nodes, where
each node is connected to 2k first neighbors, we addM
øNsN−2k−1d /2 new links between randomly chosen pairs
of nodes. Self- and repeated links are avoided.

Our extensive numerical computation on modelssid–sivd
shows that the eigenratioR has a well defined minimum at
b=1 in each casesFig. 1d. The only exception is the class of
homogeneous networks, where all the nodes have the same
degreek. When the network is homogeneous, the weights
ki

−b can be factored out in Eq.s8d and a uniform stationary
distribution is achieved for anyb. In this case, the eigenratio
R is independent ofb, as shown in Fig. 1sad for random
homogeneous networks withk=10 ssolid lined. A random
homogeneous network corresponds to a random SFN forg
=`. In all other cases, including the relatively homogeneous
SWN’s, the eigenratio exhibits a pronounced minimum at
b=1 snote the logarithmic scale in Fig. 1d.

In SWN’s, the heterogeneity of the degree distribution
increases as the numberM of random links is increased. The
eigenratioR at b=0 reduces asM is increased, but the eigen-
ratio atb=1 reduces even more, so that the minimum of the
eigenratio becomes more pronounced as the heterogeneity of

the degree distribution is increasedfFig. 1sddg. Similar re-
sults are observed in the original Watts-Strogatz model of
SWN’s, where the mean degree is kept fixed as the number
of random links is increasedf12g. SWN’s of pulse oscillators
also present enhanced synchronization atb=1 f6g.

In SFN’s, the heterogeneity increases as the scaling expo-
nentg is reduced. As shown in Fig. 1sad for random SFN’s,
the minimum of the eigenratioR becomes more pronounced
as the heterogeneity of the degree distribution is increased.
The same tendency is observed across different models of

networks. For example, for a giveng and kmin= k̃min, the
minimum of the eigenratio is more pronounced in networks
with expected scale-free sequencefFig. 1sbdg than in random
SFN’s fFig. 1sadg, because the former may have nodes with

degree smaller thank̃min. For smallg, the eigenratio in grow-
ing SFN’s fFig. 1scdg behaves similarly to the eigenratio in
random SFN’sfFig. 1sadg. A pronounced minimum for the
eigenratioR at b=1 is also observed in various other models
of complex networksf30g.

C. Mean-field approximation

A mean-field approximation provides further insight into
the effects of degree heterogeneity and the dependence ofR
on b.

The dynamical equationss1d can be rewritten as

dxi

dt
= fsxid + ski

1−bfh̄i − hsxidg, s10d

where

h̄i =
1

ki
o

j

Aijhsxjd s11d

is the local mean field from all the nearest neighbors of os-
cillator i. If the network is sufficiently random and the sys-
tem is close to the synchronized states, we may assume that

h̄i <hssd and we may approximate Eq.s10d as

dxi

dt
= fsxid + ski

1−bfhssd − hsxidg, s12d

indicating that the oscillators are decoupled and forced by a
common oscillator with outputhssd.

From a variational equation analogous to Eq.s5d, we have
that all oscillators in Eq.s12d will be synchronized by the
common forcing when

a1 , ski
1−b , a2 ∀ i . s13d

For bÞ1, it is enough to have a single node with degree
very different from the others for this condition not to be
satisfied for anys. In this case, the complete synchronization
becomes impossible because the corresponding oscillator
cannot be synchronized. Within this approximation, the
eigenratio is R=skmax/kmind1−b for bø1 and R
=skmin/kmaxd1−b for b.1, where kmin=minihkij and kmax

=maxihkij. The minimum ofR is indeed achieved atb=1, in
agreement with our numerical simulations.

Therefore, this simple mean-field approximation not only
explains the results of Ref.f8g on the suppression of syn-

FIG. 1. EigenratioR as function ofb: sad random SFN’s with
g=3 sPd, g=5 sjd, and g=` ssolid lined, for kmin=10; sbd net-

works with expected scale-free sequence forg=3 andk̃min=10; scd
growing SFN’s forg=3 andm=10; sdd SWN’s with M =256 sPd
and M =512 sjd, for k=1. Each curve is the result of an average
over 50 realizations forN=1024.
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chronizability due to heterogeneity in unweighted networks,
but also predicts the correct condition for maximum synchro-
nizability in weighted networks.

IV. MIXING RATE AND SYNCHRONIZABILITY

We relate the eingenratioR to the mixing rate of the pro-
cess of diffusion introduced in Sec. III A and we argue that,
for b=1 and large, sufficiently random networks, the syn-
chronizability depends only on the mean degree of the net-
work.

A. Mean-degree approximation

We now present a general physical theory for the eigen-
ratio R. In what follows we focus on the case of maximum
synchronizabilitysb=1d. For b=1 and an arbitrary network,
Eq. s8d can be written as

P = D−1/2sI − HdD1/2, s14d

where H=D−1/2LD−1/2 as in Eq. s4d. From the identity
detsP−lId=detsI −H−lId, valid for anyl, it follows that the
spectra of matricesP and H are related viarsPd=1−rsHd,
and the uniform stationary state of the processPny is asso-
ciated with the null eigenvalue of the coupling matrixG. We
then define the mixing rate asn=ln m−1, where

m = lim
n°`

iPny − y0i1/n s15d

is the mixing parameter,y0=s1,1, . . . ,1d is the stationary
distribution discussed in Sec. III B,y is an arbitrary initial
distribution normalized asoikiyi =oiki, and i·i is the usual
Euclidean norm. In nonbipartite connected networksf20g, we
havelN,2 and the initial distributiony always converges to
the stationary distributiony0.

The convergence of the limit in Eq.s15d is dominated by
the second largest eigenvalue of matrixP in absolute value,
namely maxi=2,. . .Nu1−liu. sThe largest eigenvalue is associ-
ated with the stationary statey0.d As a result, forany net-
work, the mixing parameter is

m = maxh1 − l2,lN − 1j. s16d

Therefore, the mixing is faster in networks where the eigen-
values of the coupling matrix are concentrated close to 1.

The condition for the stability of the synchronized states
also requires the eigenvalues of the coupling matrix to be
close to 1, although through a slightly different relationsR
=lN/l2 to be smalld. We can combine these two conditions
to write an upper bound for the eigenratioR in terms of the
mixing parameter:

Rø
1 + m

1 − m
. s17d

This relation is relevant because of its general validity and
clear physical interpretation. We show that this upper bound
is a very good approximation of the actual value ofR in
many networks of interest.

The mixing parameterm can be expressed as an explicit
function of the mean degreek. Based on results of Ref.f22g

for random networks with given expected degrees, we get

maxh1 − l2,lN − 1j = f1 + os1dg
2
Îk

. s18d

Moreover, the semicircle law holds and the spectrum of ma-
trix P is symmetric around 1 forkmin@Îk in the thermody-
namical limit f22g. These results are rigorous for ensembles
of networks with a given expected degree sequence and suf-
ficiently large minimum degreekmin, but our extensive nu-
merical computation supports the hypothesis that the ap-
proximate relations

l2 < 1 −
2
Îk

, lN < 1 +
2
Îk

s19d

hold under much milder conditions. In particular, relations
s19d are expected to hold true for any large, sufficiently ran-
dom network withkmin@1. The rationale for this is that, for
b=1, the diffusionin each node of one such network is the
same as in a random homogeneous network with the same
mean degree, where relationss19d are known to be satisfied
f20g.

Under the assumption that 1−l2<lN−1, the eigenratio
can be written as

R<
1 + m

1 − m
, s20d

where m is defined in Eq.s16d. Therefore, the larger the
mixing rate ssmaller md, the more synchronizable the net-
work ssmallerRd and vice versa. From Eq.s19d, we have that
the mixing parameter can be approximated asm<2/Îk and
the eigenratio can be approximated as

R<
1 + 2/Îk

1 − 2/Îk
. s21d

Therefore, forb=1, the eigenratioR is primarily determined
by the mean degree and does not depend on the number of
oscillators and the details of the degree distribution.

This is a remarkable result because, regardless of the de-
gree distribution, the network atb=1 is just as synchroniz-
able as a random homogeneous network with the same mean
degree, and random homogeneous networks appear to be as-
ymptotically optimal in the sense thatR approaches the ab-
solute lower bound in the thermodynamical limit for large
enoughk f9g.

B. Numerical verification

Now we test our predictions in modelssid–siii d of SFN’s,
and we show that the synchronizability is significantly en-
hanced forb=1 as compared to the case of unweighted cou-
pling sb=0d.

As shown in Fig. 2, in unweighted SFN’s, the eigenratioR
increases with increasing heterogeneity of the degree distri-
bution ssee also Ref.f8gd. But as shown in the same figure,
the eigenratio does not increase with heterogeneity when the
coupling is weighted atb=1. The difference is especially
large for small scaling exponentg, where the variance of the
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degree distribution is large and the network is highly hetero-
geneoussnote that Fig. 2 is plotted in logarithmic scaled. The
network becomes more homogeneous asg is increased. In
the limit g=`, random SFN’s converge to random homoge-
neous networks with the same degreekmin for all the nodes
fFig. 2sadg, while networks with expected scale-free se-
quence converge to Erdős-Rényi random networksf31g,
which have links assigned with the same probability between
each pair of nodesfFig. 2sbdg, and growing SFN’s converge
to growing random networks, which are growing networks
with uniform random attachmentfFig. 2scdg. As one can see
from Figs. 2sbd and 2scd, the synchronizability is strongly
enhanced even in the relatively homogeneous Erdős-Rényi
and growing random networks; such an enhancement occurs
also in SWN’s.

For b=1, the eigenratioR is well approximated by the
relations in Eq.s20d sFig. 2, dotted linesd and Eq.s21d sFig.

2, solid linesd for all three models of SFN’s. This confirms
our result that the synchronizability is strongly related to the
mixing properties of the networkf32g. For b=1, the eigen-
ratio of the SFN’s is also very well approximated by the
eigenratio of random homogeneous networks with the same
number of linksfFig. 2, Lg. Therefore, forb=1, the varia-
tion of the eigenratioR with the heterogeneity of the degree
distribution in SFN’s is mainly due to the variation of the
mean degree of the networks, which increases in both ran-
dom SFN’s and networks with expected scale-free sequence
as the scaling exponentg is reducedfFigs. 2sad and 2sbdg.

In Fig. 3, we show the eigenratioR as a function of the
system sizeN. In unweighted SFN’s, the eigenratio increases
strongly as the number of oscillators is increased. Therefore,
it may be very difficult or even impossible to synchronize
large unweighted networks. However, forb=1, the eigenra-
tio of large networks appears to be independent of the system
size, as shown in Fig. 3 for modelssid–siii d of SFN’s. Similar
results are observed in many other models of complex net-
works. All together, these provide strong evidence for our
theory.

FIG. 2. EigenratioR as a function of the scaling exponentg: sad
random SFN’s,sbd networks with expected scale-free sequence, and
scd growing SFN’s, forb=1 sPd andb=0 ssd. The other curves are
the approximations of the eigenratio in Eqs.s20d sdotted linesd and
s21d ssolid linesd, and the eigenratio forb=1 sdashed linesd andb
=0 sdot-dashed linesd at g=`. The L symbols correspond to ran-
dom homogeneous networks with the same mean degree of the
corresponding SFN’ssthe degrees are indicated in the figured. The
other network parameters are the same as in Fig. 1.

FIG. 3. EigenratioR as a function of the number of oscillators
for g=3 and the SFN models in Figs. 2sad–2scd, respectively. Dot-
ted lines are guides for the eyes. The legend and other parameters
are the same as in Fig. 2.
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C. General bounds

We present bounds valid forany network weighted atb
=1. In this case, if the network is connected but not globally
connected andN.2, we have

1 + sN − 1d−1 ø Rø 2NkDmax, s22d

where k is the mean degree andDmax is the diameter of
the network smaximum distance between nodesd. This
relation follows from the bounds 1/NkDmaxøl2ø1 and
1+sN−1d−1ølNø2 f20g. For being valid for any network
regardless of its structure, the bounds in Eq.s22d are not tight
for specific network models, such as random homogeneous
networks. Nevertheless, they provide some insight into the
problem. In particular, heterogeneity in the degree distribu-
tion is not disadvantageous in this case because it generally
reduces the upper bound in Eq.s22d, and this is a major
difference from the case of unweighted networks considered
previouslyf8g.

V. COUPLING COST

Having shown that weighted networks exhibit improved
synchronizability, we now turn to the problem of cost. We
show that the total cost involved in the network of couplings
is minimum at the point of maximum synchronizabilitysb
=1d.

The total costC involved in the network of couplings is
defined as the minimumsin the synchronization regiond of
the total strength of all directed links,

C = smino
i=1

N

ki
1−b, s23d

wheresmin=a1/l2 is the minimum coupling strength for the
network to synchronize. We recall thata1 is the point where
the master stability function first becomes negative. Forb
=1, we haveC=Na1/l2.

In heterogeneous networks, the cost atb=1 is signifi-
cantly reduced as compared to the case of unweighted cou-
pling sb=0d, as shown in Fig. 4 for random SFN’s. The

difference becomes more pronounced when the scaling ex-
ponent g is reduced and the degree distribution becomes
more heterogeneous. The cost for SFN’s atb=1 is very well
approximated by the cost for random homogeneous networks
with the same mean degreesFig. 4, Ld, in agreement with
our analysis in Sec. IV A that, atb=1, the eigenvaluel2 is
fairly independent of the degree distribution.

As a function ofb, the cost has a broad minimum atb
=1, as shown in Fig. 5 for random SFN’s. A similar result is
observed in other models of complex networks, including
modelssii d–sivd introduced in Sec. III B. This result is im-
portant because it shows that maximum synchronizability
and minimum cost occur exactly at the same point. There-
fore, cost reduction is another important advantage of suit-
ably weighted networks.

VI. DIRECT SIMULATIONS

To confirm our analysis of enhanced synchronizability, we
simulate the dynamics on networks of chaotic maps.

The example we consider consists of SFN’s of logistic
maps,xn+1= fsxnd=axns1−xnd, where the output function is
taken to behsxd= fsxd. In this case, the master stability func-
tion is negative fors1−e−G0d=a1,a,a2=s1+e−G0d, where
G0.0 is the Lyapunov exponent of the isolated chaotic map.
In the simulations of the dynamics, the maps are assigned to
have random initial conditions close to the synchronization
manifold.

We consider two values of the bifurcation parametera for
which the logistic map is chaotic:a=3.58, wherea2/a1
<19, anda=4.0, wherea2/a1=3. In both cases, our simu-
lations show that, ifR,a2/a1, then there is a finite interval
of the overall coupling strengthsmin,s,smax where the
network becomes completely synchronized after a transient
time. Moreover, the simulations confirm thatsmin=a1/l2
and smax=a2/lN, as expected. In order to display the
synchronization regions for differentb in the same figure,
we introduce s* =soiki

1−b, smin
* =sminoiki

1−b, and smax
*

=smaxoiki
1−b.

In Fig. 6, we show the synchronization regionssmin
* ,smax

* d
as a function of the scaling exponentg in random SFN’s, for
b=1 sPd andb=0 ssd. The factoroiki

1−b is N for b=1 and

FIG. 4. Normalized costC/Na1 as a function of the scaling
exponentg for random SFN’s withb=1 sPd andb=0 ssd, and for
random homogeneous networks with the same mean degreesLd.
The dashed line corresponds tog=`. The other parameters are the
same as in Fig. 1.

FIG. 5. Normalized costC/Na1 as a function ofb for random
SFN’s with scaling exponentg=3. The other parameters are the
same as in Fig. 1.
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kN for b=0. For a=3.58, the networks are synchronizable
for somes* in the regiong*4.0 if the couplings are un-
weightedsb=0d and in a wider region ofg if the couplings
are weighted atb=1 fFig. 6sadg. In the region where both
weighted and unweighted networks are synchronizable, the
interval ssmin

* ,smax
* d, in which synchronization is achieved, is

much wider forb=1 than forb=0. In terms of the original
coupling strengths, the difference is even largersk times
largerd. More strikingly, fora=4.0, unweighted networks do
not synchronize for any coupling strength, but the networks
weighted atb=1 do synchronize forg&4.0 in a nonzero
interval of s* fFig. 6sbdg.

The costC defined in Eq.s23d is exactlysmin
* . In agree-

ment with the results in Fig. 4,smin
* is clearly smaller for

b=1 than forb=0 in the interval ofg where both weighted
and unweighted networks are synchronizablefFig. 6sadg. All
together, the results in Fig. 6 illustrate the enhancement
of synchronizability and the reduction of cost in weighted
networks.

VII. CONCLUDING REMARKS

Motivated by the problem of complex-network synchro-
nization, we have introduced a model of directed networks
with weighted couplings that incorporates the saturation of
connection strength expected in highly connected nodes of
realistic networks. In this model, the total strength of all
in-links at a nodei with degreeki is proportional toki

1−b,
where the parameterb is a measure of the degree-dependent
saturation in the amount of information that a node receives
from other nodes. In a network of oscillators, the weights
ki

1−b can be alternatively interpreted as a property of thesin-

put function of thed oscillators rather than a property of the
links. We believe that this model can serve as a paradigm to
address many problems of dynamics on complex networks.

Here we have studied complete synchronization of
identical oscillators. We have shown that, for a given net-
work topology, the synchronizability is maximum and the
total cost involved in the network of couplings is minimum
when b=1. For large, sufficiently random network with
minimum degreekmin@1, the synchronizability atb=1 is
mainly determined by the mean degree and is fairly indepen-
dent of the number of oscillators and the details of the degree
distribution.

This should be contrasted with the case of unweighted
couplingsb=0d, where the synchronizability is strongly sup-
pressed as the number of oscillators or heterogeneity of the
degree distribution is increased. In the caseb=1, the hetero-
geneity of the degree distribution is completely balanced and
the networks are just as synchronizable as random homoge-
neous networks with the same mean degree.

Our results are naturally interpreted within a framework
where the condition for the linear stability of synchronized
states is related to the mixing rate of a diffusive process
relevant for the communication between oscillators. Under
mild conditions, we have shown that, the larger the mixing
rate, the more synchronizable the network. In particular, in
unweighted networks, the mixing rate decreases with in-
creasing heterogeneity. This, along with the conditionb=1
for enhanced synchronizability, explains and solves what we
call the “paradox of heterogeneity.” This paradox refers to
the sapparentlyd paradoxal relation between the synchroniz-
ability and the average distance between oscillators, ob-
served in heterogeneous unweighted networksf8g, and is
clarified when we observe that synchronizability is ulti-
mately related to the mixing properties of the network.

We expect our results to be relevant for both network
design and the understanding of dynamics in natural systems,
such as neuronal networks, where the saturation of connec-
tion strength is expected to be important. Although we have
focused mainly on SFN’s, a class of networks that has re-
ceived most attention, our analysis is general and applies to
networks with arbitrary degree distribution.
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