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Network synchronization, diffusion, and the paradox of heterogeneity
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Many complex networks display strong heterogeneity in the de@@aectivity distribution. Heterogene-
ity in the degree distribution often reduces the average distance between nodes but, paradoxically, may sup-
press synchronization in networks of oscillators coupled symmetrically with uniform coupling strength. Here
we offer a solution to this apparent paradox. Our analysis is partially based on the identification of a diffusive
process underlying the communication between oscillators and reveals a striking relation between this process
and the condition for the linear stability of the synchronized states. We show that, for a given degree distri-
bution, the maximum synchronizability is achieved when the network of couplings is weighted and directed
and the overall cost involved in the couplings is minimum. This enhanced synchronizability is solely deter-
mined by the mean degree and does not depend on the degree distribution and system size. Numerical
verification of the main results is provided for representative classes of small-world and scale-free networks.
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I. INTRODUCTION Previous work has focused mainly on the role played by
) _ shortest paths between nodes. By considering only shortest
The interplay between network structure and dynamicsaths it is implicitly assumed that the information spreads
has attracted a great deal of attention in connection with @nly along them. However, the communication between os-
variety of processefl], including epidemic spreadin@®],  cillators is more closely related to a process of diffusion on
congestion and cascading failuf@, and synchronization of the network, which is a process involving all possible paths
coupled oscillator§4—11. Much of this interest has been between nodes. Another basic assumption of previous work
prompted by the discovery that numerous real-world netis that the oscillators are coupled symmetrically and with the
works [1] share universal structural features, such as thsame coupling strengtf8]. Under the assumption of sym-
small-world[12] and scale-free properti¢$3]. Small-world ~ metric coupling, the maximum synchronizability may be in-
networks(SWN’s) exhibit a small average distance betweendeed achieved when the coupling strength is uniff@mBut
nodes and high clusterifg.2]. Scale-free networkéSFN'’s) to get a better synchronizability, the couplings are not nec-
are characterized by an algebraic, highly heterogeneous digssarily symmetrical. Many real-world networks are actually
tribution of degreegnumber of links per nodg[13]. Most  directed[1] and weighed17], and the communication ca-
SFN’s also exhibit a small average distance between nodd¥@city of a node is likely to saturate when the degree be-
[14] and this distance may become smaller as the heterog€°Mes large.
neity (variance of the degree distribution is increasied]. It In this paper, we study the effect that asymmetry and

has been shown that these structural properties strongly i%?tgé?n“ﬂgxoag?xglrﬁf flvtrg?ggr‘]t?f?\’; OE tgi aﬁynl%r;rggslzgflilrllt-y
fluence the dynamics on the network. P X phy P

In oscillator networks, the ability to synchronize is gener_formation diffusion that is relevan_t for the comr_nunication
: ' , ; between oscillators and we investigate the relation between
ally enhanced in bOth SWN’s and rando_m SFN's as comyyq process and the stability of synchronized states in di-
pared to regular lattice$16]. I_-|owever, It was rec_en_tly rected networks with weighted couplings. We address these
shown that random networks with strong heterogeneity in th‘?undamental issues using as a paradigm the problem of com-
dggree distribution,.such as random SFN's, are much mor lete synchronization of identical oscillators.
difficult to synchronize than random homogeneous Networks \ye fing that the synchronizability is explicitly related to
[8], even though the former display smaller average distancge mixing rate of the underlying diffusive process. For a
between npdeE;lS]. This result IS Interesting for wo main ;e degree distribution, the synchronizability is maximum
reasons. First, it challengeg previous interpretations that t hen the diffusion has a uniform stationary state, which in
enhancement of synchronl_zabmty in SWN's af‘d SFN,SgeneraI requires the network of couplings to be weighted and
would be due to the reduction of the average distance begirecied. For large sufficiently random networks, the maxi-
tween oscillators. Second, in networks where synchronizag, ,, synchronizability is primarily determined by the mean
tion is desirable, it puts in check the hypothegs that t_hedegree of the network and does not depend on the degree
scale-free property has been favored by evolution for be'n%istribution and system size, in sharp contrast with the case
dynamically advantageous. of unweighted(symmetri¢ coupling, where the synchroniz-
ability is strongly suppressed as the heterogeneity or number
of oscillators is increased. Furthermore, we show that the
*Electronic address: motter@mpipks-dresden.mpg.de total cost involved in the network coupling is significantly
"Electronic address: cszhou@agnld.uni-potsdam.de reduced, as compared to the case of unweighted coupling,
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and is minimum when the synchronizability is maximum. matrix L is undirected and unweighted, but f@+ 0, the
Some of these results were announced in Rid]. network of couplings becomes not only weighted but also

The fact that the communication between oscillators takeslirected because the resulting mat@xis in general asym-
place along all paths explains why the synchronizability doesnetric. This is a special kind of directed network where the
not necessarily correlate with the average distance betweeatumber ofin-links is equal to the number @fut-links in each
oscillators. Moreover, the synchronizability of SFN’s is node, and the directions are encoded in the strengths of in-
strongly enhanced when the network of couplings is suitablyand out-links. In spite of the possible asymmetry of matrix
weighted. This, in addition to the well-known improved G, all the eigenvalues of matri® are nonnegative reals and
structural robustness of SFN'4¢9], may have played a cru- can be ordered as OF=<M\,--- <\, as shown below.
cial role in the evolution of many SFN’s.

The paper is organized as follows. In Sec. Il, we introduce
the synchronization model and the measure of synchroniz-
ability. In Sec. lll, we study the corresponding process of Equation(2) can be written as
diffusion. In Sec. IV, we focus on the case of maximum p
synchronizability. The problem of cost is considered in Sec. G=D"L, 3)
V. In Sec. VI, we present direct simulations on networks ofyhere D=diagk, ks, ... ky} is the diagonal matrix of de-
maps. Discussion and conclusions are presented in the lagfees. (We recall that the degrek is the number of os-
section. cillators coupled to oscillatori.) From the identity

de{DPL-\l)=de(D#2LD#2-\I), valid for any\, where
Il. FEORMULATION OF THE PROBLEM “det” denotes the determinant ardis the NX N identity
matrix, we have that the spectrum of eigenvalues of m&rix

We introduce a generic model of coupled oscillators ands equal to the spectrum of a symmetric matrix defined as
we present a condition for the linear stability of the syn-

chronized states in terms of the eigenvalues of the coupling H=D"A2.D#2, (4)
matrix.

B. Basic spectral properties

That is, p(G)=p(H), wherep denotes the set of eigenvalues.
From this follows that all eigenvalues of matare real, as
A. Synchronization model anticipated above. It is worth mentioning that, although the
deigenvalues ofs andH are equal, from the numerical point
of view it is much more efficient to compute the eigenvalues
from the symmetric matrisd than fromG.
dx N _ Additionally, all the eigenvalues of matri& are non-
P f(x) - 02 Gjjh(x), 1=1,2,...N, (1) negative becausd is positive semidefinite, and the smallest
=1 eigenvalue\, is always zero because the rows @fhave

wheref=f(x) describes the dynamics of each individual os-Z€ro sum. Moreover, if the network is connected, then
cillator, h=h(x) is the output functionG=(G;)) is the cou- >0 for any finite 8. This follows from the corr_espondlng
pling matrix, ando is the overall coupling strength. The Property forL and Eq.(4)—i.e., the fact that matriced and

rows of matrixG are assumed to have zero sum to ensuré- &€ congruent. Naturally, the study of complete synchroni-
that the synchronized stafe () =s(t), Ji|ds/dt=f(s)} is a zation of the whole network only makes sense if the network

is connected.

For =1, matrix H is the normalized Laplacian matrix
studied in spectral graph theofg0]. In this case, ifN=2
and the network is connected, ther<@®,<N/(N-1) and
N/(N-1)=<\y=<2. For spectral properties of unweighted
SFN's, see Refd21-23.

We consider complete synchronization of linearly couple
identical oscillators:

solution of Eq.(2).

In the case of symmetrically coupled oscillators with
uniform coupling strengthG is the usual(symmetri¢ La-
placian matrix.=(L;;): the diagonal entries atg; =k;, where
ki is the degree of nodg and the off-diagonal entries are
Lij=-1 if nodesi and| are connected and;=0 otherwise.
For G;=L;;, heterogeneity in the degree distribution sup-
presses synchronization in important classes of netw@ks C. Synchronizability

(see also Ref[10]). The synchronizability can be easily en- - ) . . .
hanced if we modify the topology of the network of cou- The variational equations governing the linear stability of

plings. Here, however, we address the problem of enhancé Synchronized statgq(t)=s(t), Di} of the system in Eqs1)
ment of synchronizability for givennetwork topology. and(2) can be diagonalized inthi blocks of the form
In order to enhance the synchronizability of heteroge- d7y
neous networks, we propose to scale the coupling strength by — =[Df(s) — aDh(s)]7, (5)
a function of the degree of the nodes. For specificity, we take dt
G = L. /KB ) whereD denotes the Jacobian matrix=o\;, and\; are the
e eigenvalues of the coupling matr®. The largest Lyapunov
where 8 is a tunable parameter. We say that the network oexponentl’(«) of this equation can be regarded as a master
coupling is weighted wheB# 0 and unweighted whep  stability function, which determines the linear stability of the
=0. The underlying network associated with the Laplaciansynchronized state for any linear coupling schdi24: the
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synchronized state is stable If(oA;)) <0 for i=2,... N.
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1 unit at nodeb. It is in this sense that the matrix in E@)

(The eigenvalue\, corresponds to a mode parallel to the describes a diffusive process with absorption and emission.

synchronization manifold.

For many widely studied oscillatory systerig 24, the
master stability functiod’(«) is negative in a single, finite
interval (a4, ). Therefore, the network is synchronizable
for someo when the eigenrati®=\y/\, satisfies

R< azlal. (6)

The right-hand side of this equation depends only on th

dynamics(f, h, ands), while the eigenratid? depends only
on the coupling matrixG. The problem of synchronization is

then reduced to the analysis of eigenvalues of the couplin

matrix [7]: the smaller the eigenratiR, the larger the syn-
chronizability of the network and vice versa.

Ill. DIFFUSION AND BALANCE OF HETEROGENEITY

We study a process of diffusion relevant for the commu-

On the other hand, the usual random walk process is con-
servative at each node. Such a process is described by the
matrix D"PAC™!, whereC;; = §;3,;k,# and the sum is over
all thek; nodes connected to nogieFor a node connected
to a nodej and a uniform distribution, this conservation law
implies that the amount of information that nodeeceives
from nodej depends on the degree of all the nodes con-

dected to nodg. But this is not what happens in a network of

self-sustained oscillators. In a network of oscillators, the
amount of information that oscillaterreceives directly from
scillatorj can only depend on the strength of the coupling
rom j to i, which is proportional to 1¥*, as in the process
described by the transition matrix in E@).

B. Balance of heterogeneity

Because the master stability functibtea) is negative in a

nication between oscillators and we argue that the synchrdinite interval (ay, @), increasing(decreasing the overall

nizability is maximum(R is minimum for g=1.

A. Diffusion process

From the identity
N N
2 Gijh(x) = 2 kPA[h(x) = h(x)], (7)
j=1 =1

we observe that the weighted coupling scheme in Egs.

and(2) is naturally related to a diffusive process with absorp-

tion and emission described by the transition matrix

1
=B

P AD A, (8)
whereA=D-L is the adjacency matrix andl is the largest
eigenvalue ofD™PA. According to this process, if we start
with an arbitrary distributiory=(y?, ... ,y™), wherey® is
associated with the initial state at nogeaftern time steps
the distribution isP"y. This process is different from the
usual(conservative random walk process. In particular, be-
causeX;P; may be different from 1, the diffusiom andout
of a node may differ even in the stationary state.

For instance, consider a network of three nodes:c,

where nodes andc have degree 1 and are both connected to

nodeb. For 8=1, the transition matrix is

0 1 0
P=(1/2 0 1/2|. (9)
0 1 0

coupling strengthr beyond a critical value oo mi,) desta-
bilizes the synchronized state. Dynamically, the loss of sta-
bility is due to a short{long-) wavelength bifurcation atr
=0madomin) [25] (see also Refl11]). Physically, this bifur-
cation excites the shorte@bngesj spatial wavelength mode
because some oscillators are too strongheakly) influ-
enced by the others.

Now, consider the process of diffusion described by ma-
trix P on a network where not all the nodes have the same
degree. Starting with an arbitrary distributignaftern steps
we haveP". If we require the(stationary distribution for
n— oo to be uniform, we obtaiB=1 because this is the only
case whergy=(1,1,...,1 is an eigenvector associated with
the eigenvalue 1, which is the largest eigenvalue of m&trix
For <1, the distribution is more heavily concentrated on
nodes with large degree. F@™>1, the concentration hap-
pens on nodes with small degree. Physically, this means that
for both <1 andB>1 some oscillators are more strongly
influenced than others and the ability of the network to syn-
chronize is limited by the least and most influenced oscilla-
tors: for small(large o the system is expected to undergo a
long- (shorty wavelength bifurcation due to the ledstos)
influenced nodes, as explained above. We then expect the
network to achieve maximum synchronizability @t 1.

In Fig. 1 we show the numerical verification of this hy-
pothesis for various models of complex networks. The net-
works are built as follow$26].

(i) Random SFN$27]. Each node is assigned to have a
numberk; =k, of “half-links” according to the probability
distribution P(k) ~ k™, where y is a scaling exponent and
kmin IS @ constant integer. The network is generated by ran-

In the stationary state, each of the three nodes has, say, 0Oggm|ly connecting these half-links to form links, prohibiting

unity (of the “diffusive quantity’). At each time step, node
receives 1/2 unit from nodaand 1/2 unit from node, and
each of the nodesa and c receives 1 unit from nodé.

Therefore, nodé sends a total of 2 units and receives only 1

unit, while each of the nodea and c sends 1/2 unit and

self- and repeated links. In the limjt=cc, all nodes have the
same degre&=Kqn.
(i) Networks with expected scale-free seque[ﬁ@ The

network is generated from a sequedqekz, . kN, where

receives 1 unit. This means that there is an “absorption” of(l/kmln follows the distribution P(k) ~k™ and maxk;

1/2 unit at each of the nodesandc and the “emission” of

<3 k A link is then independently assigned to each pair of

016116-3



MOTTER, ZHOU, AND KURTHS PHYSICAL REVIEW E71, 016116(2005

r ' ‘ Fe T T T T T ] the degree distribution is increasgig. 1(d)]. Similar re-
1021 « . die L . o ] sults are observed in the original Watts-Strogatz model of

Eo. o e L SWN'’s, where the mean degree is kept fixed as the number
o - * . i . * ] of random links is increasdd 2]. SWN'’s of pulse oscillators

10 F  "ae oo {10 ¢ ' E also present enhanced synchronizatioatl [6].

;(a) e 0,0 In SFN's, the heterogeneity increases as the scaling expo-

N 10 L nenty is reduced. As shown in Fig.(d) for random SFN's,
s . — the minimum of the eigenratiR® becomes more pronounced

r L, ] as the heterogeneity of the degree distribution is increased.
10° E . E ‘e The same tendency is observed across different models of

- E% o 10° | " Seaseett networks. For example, for a givep and Kyj,=Kmin, the
10' b ‘. . . Lo ] minimum of the eigenratio is more pronounced in networks
§ et - . L with expected scale-free sequeEgay. 1(b)] than in random
10° e (@) et SFN's[Fig. 1(a)], because the former may have nodes with

-1.0 0.0 1.0 20 30 -10 0.0 1.0 20 3.0 degree smaller thaky,,. For smally, the eigenratio in grow-
B B ing SFN's[Fig. 1(c)] behaves similarly to the eigenratio in
random SFN'gFig. 1(a@)]. A pronounced minimum for the
FIG. 1. EigenratioR as function ofg: (a) random SFN's with  eigenratioR at 3=1 is also observed in various other models
y=3 (@), y=5 (W), and y== (solid ling), for kyjy=10; (b) net-  of complex network$30].

works with expected scale-free sequencesfer3 andk,;,=10; (c)

10

growing SFN’s fory=3 andm=10; (d) SWN’s with M =256 (®) C. Mean-field approximation
andM=512 (W), for k=1. Each curve is the result of an average A mean-field approximation provides further insight into
over 50 realizations foN=1024. the effects of degree heterogeneity and the dependenRe of
on B.
nodes(i, j) with probability p; =kk;/=;k;. In this model, self- The dynamical equationd) can be rewritten as
links are allowed. We observe, however, that the eigenRitio dx _
is insensitive to the removal of self-links. — =f(x) + (rkil_'g[hi =h(x)]1, (10
(iii ) Growing SFN's[28]. We start with a fully connected dt

network withm nodes and at each time step a new node withyhere

m links is added to the network. Each new link is connected

toa nqdei in the network with probabilitﬂi~(1—p)ki+p, H: klE Aijh(x;) (11
wherek; is the updated degree of nod@and O<p=<1is a '

tunable parameter. For large degrees, the scaling exponentigfthe local mean field from all the nearest neighbors of os-

the resulting network isy=3+p[m(1-p)]™. For p=0, the  cillator i. If the network is sufficiently random and the sys-
exponent isy=3 and we recover the Barabasi-Albert modeltem is close to the synchronized stateve may assume that

[13]. hi~h(s) and we may approximate E6L0) as
(iv) SWN’s[29]. Starting with a ring ofN nodes, where © y app @0
each node is connected tac dirst neighbors, we add dx _ 1-8 B
<N(N-2«-1)/2 new links between randomly chosen pairs dt f04) + ol ™"Th(s) —h(x)], (12)

of nodes. Self- and repeated links are avoided. o )

Our extensive numerical computation on mod@)s(iv) indicating tha_t the os_C|IIators are decoupled and forced by a
shows that the eigenratid has a well defined minimum at €°mmon oscillator with output(s).
B=1in each caséFig. 1). The only exception is the class of  From a variational equation analogous to E5), we have
homogeneous networks, where all the nodes have the sarifé@t all oscillators in Eq(12) will be synchronized by the
degreek. When the network is homogeneous, the weightscommon forcing when
k[ﬁ can be factored out in E¢8) and a uniform stationary <ok P <a,0 . (13)
distribution is achieved for ang. In this case, the eigenratio
R is independent of3, as shown in Fig. (B for random For B#1, it is enough to have a single node with degree
homogeneous networks witk=10 (solid line). A random  very different from the others for this condition not to be
homogeneous network corresponds to a random SFN for satisfied for anyr. In this case, the complete synchronization
=o, In all other cases, including the relatively homogeneoudecomes impossible because the corresponding oscillator
SWN's, the eigenratio exhibits a pronounced minimum atcannot be synchronized. Within this approximation, the
B=1 (note the logarithmic scale in Fig).1 eigenratio is R=(Kpa/Kmin)'® for B<1 and R

In SWN’s, the heterogeneity of the degree distribution=(Kmin/kma)'™® for B>1, where kpj,=min{k} and Knpax
increases as the numbr of random links is increased. The =max{k}. The minimum ofR is indeed achieved g@=1, in
eigenratioR at 3=0 reduces aM is increased, but the eigen- agreement with our numerical simulations.
ratio at3=1 reduces even more, so that the minimum of the Therefore, this simple mean-field approximation not only
eigenratio becomes more pronounced as the heterogeneity ekplains the results of Ref8] on the suppression of syn-
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chronizability due to heterogeneity in unweighted networksfor random networks with given expected degrees, we get
but also predicts the correct condition for maximum synchro-

nizability in weighted networks. max1 -\ \y-1}=[1+ 0(1)]3,_ (18)
vk

V- MIXING RATE AND SYNCHRONIZABILITY Moreover, the semicircle law holds and the spectrum of ma-

We relate the eingenrati@ to the mixing rate of the pro- trix P is symmetric around 1 foky,> vk in the thermody-
cess of diffusion introduced in Sec. Ill A and we argue that,namical limit[22]. These results are rigorous for ensembles
for =1 and large, sufficiently random networks, the syn-of networks with a given expected degree sequence and suf-

chronizability depends only on the mean degree of the nefficiently large minimum degreé,,, but our extensive nu-
work. merical computation supports the hypothesis that the ap-

proximate relations

A. Mean-degree approximation 2 2
. . )\2”1—_r—, )\Nzl"'_f— (19)
We now present a general physical theory for the eigen- N VK

ratio R. In what follows we focus on the case of maximum
synchronizability(3=1). For =1 and an arbitrary network, hold under much milder conditions. In particular, relations

Eq. (8) can be written as (19 are expected to hold true for any large, sufficiently ran-
s o dom network withk,,> 1. The rationale for this is that, for
P=D""4l -H)D"4, (14)  p=1, the diffusionin each node of one such network is the

where H=D"Y2LD"2 as in Eq. (4). From the identity same as in a random homogeneous network with the same
de{P-\I)=de(l-H-\I), valid for any\, it follows that the mean degree, where relatiofikd) are known to be satisfied
spectra of matrice® andH are related vigp(P)=1-p(H), [20].

and the uniform stationary state of the proc®8g is asso- Carll.lggevrwtiggnazzumptlon that Az~Xy~1, the eigenratio
ciated with the null eigenvalue of the coupling mat@xWe

then define the mixing rate as=In u™*, where s 1+u 20
= lim||PMy =yl (15) 1-p'

_ o m _ _ where p is defined in Eq.(16). Therefore, the larger the

is the mixing parametery,=(1,1,...,1 is the stationary mixing rate (smaller u), the more synchronizable the net-

distribution discussed in Sec. Ill B; is an arbitrary initial  work (smallerR) and vice versa. From E¢L9), we have that
distribution normalized a&ky;==ik;, and || is the usual the mixing parameter can be approximateduas2/\k and
Euclidean norm. In nonbipartite connected netwd2@, we  the eigenratio can be approximated as
havely< 2 and the initial distributiory always converges to —
the stationary distributiory,. R~ L¥2NhK 21)

The convergence of the limit in E415) is dominated by 1-2NK
the second largest eigenvalue of matfixn absolute value, . o ) )
namely max, y|1-\|. (The largest eigenvalue is associ- Therefore, for3=1, the eigenratid is primarily determined
ated with the stationary statg,.) As a result, forany net- Py the mean degree and does not depend on the number of

work, the mixing parameter is oscillators and the details of the degree distribution.
This is a remarkable result because, regardless of the de-
p=maxl—h;Ay— 1} (16)  gree distribution, the network =1 is just as synchroniz-

Therefore, the mixing is faster in networks where the eigen-able as a random homogeneous network with the same mean
degree, and random homogeneous networks appear to be as-

values of the coupling matrix are concentrated close to 1. mptotically optimal in the sense thet approaches the ab-
The condition for the stability of the synchronized statesYMPtotically opti : PP

also requires the eigenvalues of the coupling matrix to bésolute lower bound in the thermodynamical limit for large
close to 1, although through a slightly different relatidgd enoughk [9].

=\n/A, to be small. We can combine these two conditions

to write an upper bound for the eigenraioin terms of the B. Numerical verification

mixing parameter: Now we test our predictions in modelg—(iii) of SFN’s,

1+pu and we show that the synchronizability is significantly en-
R=< 1-u (17 hanced forB=1 as compared to the case of unweighted cou-
# pling (8=0).

This relation is relevant because of its general validity and As shown in Fig. 2, in unweighted SFN's, the eigenr&io
clear physical interpretation. We show that this upper boundncreases with increasing heterogeneity of the degree distri-
is a very good approximation of the actual value Rfin bution (see also Ref(8]). But as shown in the same figure,
many networks of interest. the eigenratio does not increase with heterogeneity when the
The mixing parametep can be expressed as an explicit coupling is weighted apB=1. The difference is especially
function of the mean degrde Based on results of Ref22] large for small scaling exponemnt where the variance of the
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FIG. 2. EigenratidRk as a function of the scaling exponent(a)
random SFN’s(b) networks with expected scale-free sequence, and FIG. 3. EigenratioR as a function of the number of oscillators
(c) growing SFN's, for3=1 (®) and3=0 (O). The other curves are for y=3 and the SFN models in Figs(a?-2(c), respectively. Dot-
the approximations of the eigenratio in E¢&0) (dotted linegand  ted lines are guides for the eyes. The legend and other parameters
(21) (solid lineg, and the eigenratio fop=1 (dashed lingsand 8 are the same as in Fig. 2.
=0 (dot-dashed lingsat y=«. The ¢ symbols correspond to ran-
dom homogeneous networks with the same mean degree of thg solid lines for all three models of SFN’s. This confirms
corresponding SFN'sthe degrees are indicated in the figurehe  our result that the synchronizability is strongly related to the
other network parameters are the same as in Fig. 1. mixing properties of the network32]. For 3=1, the eigen-

ratio of the SFN’s is also very well approximated by the

degree distribution is large and the network is highly heteroeigenratio of random homogeneous networks with the same
geneougnote that Fig. 2 is plotted in logarithmic scaldhe  number of links[Fig. 2, ¢ ]. Therefore, for3=1, the varia-
network becomes more homogeneousyais increased. In tion of the eigenratidRk with the heterogeneity of the degree
the limit y=o0, random SFN'’s converge to random homoge-distribution in SFN’s is mainly due to the variation of the
neous networks with the same degigg, for all the nodes mean degree of the networks, which increases in both ran-
[Fig. 2@], while networks with expected scale-free se-dom SFN’'s and networks with expected scale-free sequence
guence converge to Esg-Rényi random network$31],  as the scaling exponentis reducedFigs. 2a) and Zb)].
which have links assigned with the same probability between In Fig. 3, we show the eigenrati@ as a function of the
each pair of nodefFig. 2(b)], and growing SFN’s converge system sizéN. In unweighted SFN's, the eigenratio increases
to growing random networks, which are growing networksstrongly as the number of oscillators is increased. Therefore,
with uniform random attachmefFEig. 2(c)]. As one can see it may be very difficult or even impossible to synchronize
from Figs. Zb) and Zc), the synchronizability is strongly large unweighted networks. However, f8=1, the eigenra-
enhanced even in the relatively homogeneouss&Rényi  tio of large networks appears to be independent of the system
and growing random networks; such an enhancement occusize, as shown in Fig. 3 for modgig—(iii ) of SFN’s. Similar
also in SWN’s. results are observed in many other models of complex net-

For B=1, the eigenratidRk is well approximated by the works. All together, these provide strong evidence for our
relations in Eq(20) (Fig. 2, dotted linesand Eq.(21) (Fig.  theory.
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FIG. 4. Normalized cosC/Na; as a function of the scaling FIG. 5. Normalized cos€/Nea, as a function of3 for random

exponenty for random SFN's with3=1 (@) and3=0 (O), and for  SFN's with scaling exponeny=3. The other parameters are the
random homogeneous networks with the same mean dégrée  same as in Fig. 1.
The dashed line correspondsyg . The other parameters are the

same as in Fig. 1. . .
g difference becomes more pronounced when the scaling ex-

ponenty is reduced and the degree distribution becomes
C. General bounds more heterogeneous. The cost for SFN'@atl is very well

We present bounds valid fany network weighted ag ~ approximated by the cost for random homogeneous networks
=1. In this case, if the network is connected but not globallywith the same mean degr¢Eig. 4, ¢), in agreement with

connected ant>2, we have our analysis in Sec. IV A that, g8=1, the eigenvalua, is
i fairly independent of the degree distribution.
1+(N-1)7" < R=2NkDpqy (22) As a function of3, the cost has a broad minimum At

=1, as shown in Fig. 5 for random SFN'’s. A similar result is
observed in other models of complex networks, including
models(ii)—(iv) introduced in Sec. lll B. This result is im-
portant because it shows that maximum synchronizability
and minimum cost occur exactly at the same point. There-
Jore, cost reduction is another important advantage of suit-
&bly weighted networks.

where k is the mean degree arid,,,, is the diameter of
the network (maximum distance between noglesThis
relation follows from the bounds NKD,,=M\,<1 and
1+(N-1)"t<\y=2 [20]. For being valid for any network
regardless of its structure, the bounds in &%) are not tight
for specific network models, such as random homogeneo
networks. Nevertheless, they provide some insight into th
problem. In particular, heterogeneity in the degree distribu-

tion is not disadvantageous in this case because it generally

reduces the upper bound in E2), and this is a major V1. DIRECT SIMULATIONS

difference from the case of unweighted networks considered Tq confirm our analysis of enhanced synchronizability, we

previously[8]. simulate the dynamics on networks of chaotic maps.

The example we consider consists of SFN’s of logistic
maps, Xn+1="F(x,) =ax,(1-x,), where the output function is
taken to beh(x)=f(x). In this case, the master stability func-

Having shown that weighted networks exhibit improvedtion is negative for(1-e"0)=a; <a<a,=(1+€"), where
synchronizability, we now turn to the problem of cost. We I'o>0 is the Lyapunov exponent of the isolated chaotic map.
show that the total cost involved in the network of couplings!n the simulations of the dynamics, the maps are assigned to
is minimum at the point of maximum synchronizabiligg ~ have random initial conditions close to the synchronization
=1). manifold.

The total costC involved in the network of couplings is ~ We consider two values of the bifurcation parametéor

defined as the minimurtin the synchronization regiorof ~ Which the logistic map is chaotica=3.58, wherea,/a;
the total strength of all directed links, ~19, anda=4.0, wherea,/a;=3. In both cases, our simu-

lations show that, iIR<a,/ a4, then there is a finite interval

B 1-8 of the overall coupling strengthr,i,< o <oy Where the

C=0omin ki 7, (23)  network becomes completely synchronized after a transient
=1 time. Moreover, the simulations confirm that,,,=a1/\»

whereoin=a;/\, is the minimum coupling strength for the and oma,=az/\y, as expected. In order to display the
network to synchronize. We recall that is the point where — synchronization regions for differerg in the same figure,
the master stability function first becomes negative. Bor we introduce " =oSiki #, o in=ominzik #, and oy,
=1, we haveC=Na;/\,. = omadik P o

In heterogeneous networks, the costgatl is signifi- In Fig. 6, we show the synchronization regian,;,, 7,2,
cantly reduced as compared to the case of unweighted coas a function of the scaling exponentn random SFN's, for

pling (8=0), as shown in Fig. 4 for random SFN’s. The =1 (®) and3=0 (O). The factor2k! # is N for =1 and

V. COUPLING COST

N
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15 71— . . T put function of the oscillators rather than a property of the
PG S P links. We believe that this model can serve as a paradigm to
1.0 | 1 F St . address many problems of dynamics on complex networks.

Here we have studied complete synchronization of
identical oscillators. We have shown that, for a given net-
work topology, the synchronizability is maximum and the
total cost involved in the network of couplings is minimum

0.0, 30 40 50 6020 3.0 40 50 6.0 when B=1. For large, sufficiently random network with
R Y R Y R minimum degreek,>1, the synchronizability ap=1 is
mainly determined by the mean degree and is fairly indepen-

FIG. 6. Synchronization regiofu,,, o) @s a function ofy ~ dent of the number of oscillators and the details of the degree
>2.8 in random SFN'’s of logistic maps, fg8=1 (@) and =0  distribution.

*

£
©
0.5 | (a) oo o) 1

(O). The bifurcation parameter i®) a=3.58 and(b) a=4.0. Aver- This should be contrasted with the case of unweighted
ages are taken over 20 realizations of the networks. The other p&oupling(8=0), where the synchronizability is strongly sup-
rameters are the same as in Fig. 1. pressed as the number of oscillators or heterogeneity of the

degree distribution is increased. In the c@&sel, the hetero-
kN for B=0. Fora=3.58, the networks are synchronizable geneity of the degree distribution is completely balanced and
for someo” in the regiony=4.0 if the couplings are un- the networks are just as synchronizable as random homoge-
weighted(8=0) and in a wider region of if the couplings  neous networks with the same mean degree.
are weighted ap=1 [Fig. §a)]. In the region where both Our results are naturally interpreted within a framework
weighted and unweighted networks are synchronizable, thehere the condition for the linear stability of synchronized
interval (¢,,,,, 0s,)» IN Which synchronization is achieved, is States is related to the mixing rate of a diffusive process
much wider forg=1 than for3=0. In terms of the original relevant for the communication between oscillators. Under
coupling strengths, the difference is even largék times mild conditions, we have shown that, the larger the mixing
largen. More strikingly, fora=4.0, unweighted networks do rate, fche more synchromzable Fhe network. In pamcullar,.m
not synchronize for any coupling strength, but the networkg/nweighted networks, the mixing rate decreases with in-
weighted atB=1 do synchronize fory=<4.0 in a nonzero Creasing heterogeneity. This, along with the conditgnl
interval of ” [Fig. 6(b)]. for enhanced synchronizability, explains and solves what we

The costC defined in Eq(23) is exactlya:nm. In agree- call the “paradox of heterogeneity.” This paradox refers_ to
ment with the results in Fig. 4q:m is clearly smaller for the (apparently paradoxal relation between the synchroniz-
B=1 than for8=0 in the interval ofy where both weighted ability and the average distance between oscillators, ob-
and unweighted networks are synchronizdifiig. 6@)]. All  Served in heterogeneous unweighted netwdd$s and is
together, the results in Fig. 6 illustrate the enhancemerftlarified when we observe that synchronizability is ulti-

of synchronizability and the reduction of cost in weighted Mately related to the mixing properties of the network.
networks. We expect our results to be relevant for both network

design and the understanding of dynamics in natural systems,
such as neuronal networks, where the saturation of connec-
VIl. CONCLUDING REMARKS tion strength is expected to be important. Although we have

Motivated by the problem of complex-network synchro- focused mainly on SEN's, a class of networks that has re-
nization, we have introduced a model of directed network<€ved most attention, our analysis is general and applies to
with weighted couplings that incorporates the saturation of'€tWorks with arbitrary degree distribution.
connection strength expected in highly connected nodes of
realistic networks. In this model, the total strength of all
in-links at a nodei with degreek; is proportional tok' ™, The authors thank Takashi Nishikawa and Diego Paz6 for
where the paramete# is a measure of the degree-dependentvaluable discussions and for revising the manuscript. A.E.M.
saturation in the amount of information that a node receivesvas supported by Max-Planck-Institut fir Physik komplexer
from other nodes. In a network of oscillators, the weightsSysteme. C.S.Z. and J.K. were partially supported by SFB
k' can be alternatively interpreted as a property of(fhe  555. C.S.Z. was also supported by the VW Foundation.
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